Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: a new biomarker

Nicole Balducci MD,1 Maria Lucia Cascavilla MD,2 Antonio Ciardella MD,3 Chiara La Morgia MD,4,5 Giacinto Triolo MD,2 Vincenzo Parisi MD,6 Francesco Bandello MD,2 Alfredo A Sadun MD PhD,7 Valerio Carelli MD PhD4,5 and Piero Barboni MD1,2

1Studio Oculistico d’Azeglio, 2Ophthalmology Unit, Policlinco Sant’Orsola-Malpighi, 4Unit of Neurology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 9IRCCS, Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, 6Scientific Institute San Raffaele, Milan, 6GB Bietti Foundation IRCCS, Rome, Italy; and 7Department of Ophthalmology, Doheny Eye Institute, University of California, Los Angeles, California, USA

ABSTRACT

Importance: The contribution of the microvascular supply to the pathogenesis of Leber’s hereditary optic neuropathy (LHON) is poorly understood.

Background: We aimed at measuring the peripapillary capillary vessel density (VD) using optical coherence tomography angiography (OCT-A) at different stages of LHON.

Design: Prospective, cross-sectional, multicenter, observational study.

Participants: Twenty-two LHON patients divided in four groups: unaffected mutation carriers (LHON-u); early sub-acute stage (LHON-e); late sub-acute stage (LHON-l); chronic stage (LHON-ch).

Methods: OCT-A scans centred on the optic disc were obtained by spectral domain OCT system.

Main Outcome Measures: VD, retinal nerve fibre layer (RNFL) and ganglion cell-inner plexiform layer (GC-IPL) thickness were compared between groups.

Results: Significant VD changes were detected in every sector (P < 0.0001). In LHON-e, the VD was reduced in the temporal sector compared with LHON-u and in the temporal and inferotemporal sectors compared with controls. In LHON-l, VD was reduced in whole, temporal, superotemporal and inferotemporal sectors compared with LHON-u and controls. In LHON-ch, the VD was reduced in all sectors compared to the other groups. An asynchronous pattern emerged in the temporal sector with VD changes occurring earlier than RNFL thickness changes and together with GC-IPL thinning.

Conclusions and Relevance: Significant peripapillary microvascular changes were detected over the different stages of LHON. Studying the vascular network separately from fibres revealed that microvascular changes in the temporal sector preceded the changes of RNFL and mirrored the GC-IPL changes. Measurements of the peripapillary vascular network may become a useful biomarker to monitor the disease process, evaluate therapeutic efficacy and elucidate pathophysiology.

Key words: Leber hereditary optic atrophy, OCT-A, optical coherence tomography angiography, optic nerve.

INTRODUCTION

Leber’s Hereditary Optic Neuropathy (LHON) is a mitochondrial disease caused by maternally inherited mitochondrial DNA (mtDNA) point mutations affecting complex I subunit genes.1,2 Individuals carrying the mtDNA mutation may remain asymptomatic throughout life (unaffected carrier) or suffer sudden central visual loss that rapidly worsens over

Correspondence: Dr Nicole Balducci, Studio Oculistico d’Azeglio, Piazza Galileo, 6 40123 Bologna, Italy. Email: balduccinicole@gmail.com

Received 25 January 2018; accepted 16 May 2018.

Conflict of interest: None declared.

Funding sources: The contribution of GB Bietti Foundation IRCCS was supported by the Italian Ministry of Health and Fondazione Roma.

© 2018 Royal Australian and New Zealand College of Ophthalmologists
several weeks (sub-acute stage). The sub-acute stage is characterized by a progressive evolution of the retinal nerve fibre layer (RNFL) swelling that continues for about 3 months and follows a specific pattern of thickening and subsequent thinning.6 The resulting impairment of central vision is evidenced by a central scotoma that enlarges over a few months and usually becomes a stable defect within 6 months. Minor RNFL thinning occurs after approximately 6 months from symptom presentation (dynamic stage) and the transition to the chronic stage occurs after 12 months.

Optic disc microangiopathy, characterized by an increase in tortuosity and size of the capillaries, has been described as a typical ophthalmoscopic feature that accompanies the optic disc swelling in asymptomatic and acute stage of the disease.4–7 For this reason the disease has been previously defined as a neurovascular disorder. However, the role of microvascular supply in the pathogenesis of LHON remains poorly understood. In particular, there remains the question as to whether these vascular features in LHON represent an epiphenomenon accompanying the pathogenic mechanism that affects the retinal ganglion cells and their axons, or, on the contrary, if the microangiopathy plays an active role in promoting the catastrophic wave of cell death that characterizes the sub-acute stage of the disease.8

Optical coherence tomography angiography (OCT-A) is a new, non-invasive tool available to evaluate optic nerve head vessels and radial peripapillary capillaries (RPC). Using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm, vascular perfusion can be quantified.9 OCT-A has been used to detect microvascular reduction in other optic neuropathies.10–15 To date, only single case reports have qualitatively described microvascular changes in LHON detected by OCT-A.16–20

The purpose of this study was to measure RPC vessel density (VD) in LHON patients, evaluated at different stages of the disease in order to characterize the timing and quantify the microvascular changes. Moreover, VD was compared with RNFL thickness to analyse the relationship between microangiopathy and fibre thickness changes.

METHODS

This was a prospective, cross-sectional, multicenter, observational study. The patients included had a molecularly confirmed diagnosis of LHON and were evaluated between December 2014 and September 2016 at the Sant’Orsola-Malpighi Hospital, Bologna or at the San Raffaele Scientific Institute, Milan. A control group was recruited matching the LHON patients for age and axial length (AL). As LHON predominantly affects men, only male LHON patients and controls were analysed.

All subjects had an extensive ophthalmologic examination and the following data were collected: best corrected visual acuity (BCVA), AL (Aladdin, Topcon Europe, Visia Imaging, San Giovanni Valdarno, Arezzo, Italy), intraocular pressure (IOP), mean deviation (MD) of visual field (SITA standard 30–2, Humphrey VF analyser, HFA II 750–4.1 2005; Carl Zeiss Meditec, Dublin, CA, USA), peripapillary RNFL thickness and macular ganglion cell inner plexiform layer (GC-IPL) thickness (Cirrus HD-OCT, software V.6.0; Carl Zeiss Meditec, Inc., Dublin, CA, USA) and RPC VD (OCT-A, AngioVue Imaging System; Optovue, Inc., software version 2015.100.0.33 Fremont, CA, USA).

Exclusion criteria for LHON patients were: female sex, the presence of spherical or cylindrical refractive errors higher than 4 and 2 diopeters (D), respectively and the presence of any systemic or ocular pathology and/or optic nerve disease which could interfere with OCT interpretation. If both eyes of LHON patients matched the inclusion criteria, they were both analysed.

Inclusion criteria for control group were the following: male sex, BCVA of at least 0.8 (decimal fraction); spherical or cylindrical refractive errors less than 4 and 2 diopeters (D), respectively; intraocular lens pressure (IOP) < 21 mmHg; normal appearance of the optic disc; normal visual field and no any ocular or systemic disease that could interfere with OCT-A examination and interpretation.

Patients were divided into four groups based on symptom duration: (i) patients carrying LHON mutation without symptoms or signs (unaffected mutation carrier LHON, LHON-u); (ii) patients in the early sub-acute stage of disease with symptom duration <3 months (early sub-acute LHON, LHON-e); (iii) patients in the late sub-acute stage of disease with symptom presentation in the previous 4–6 months (late sub-acute LHON, LHON-l); (iv) patients in the chronic stage of the disease>12 months (chronic LHON, LHON-ch).

All the participants gave their informed consent according to the Declaration of Helsinki. The internal review board at the Department of Neurological Sciences, University of Bologna, approved the study. Average and sectorial (superior, temporal, inferior, nasal) peripapillary RNFL thickness were measured as previously described.3

OCT-A instrumentation and procedure

OCT-A scans of the optic disc and the paripapillary region were obtained by spectral domain OCT system, as already documented.14

Vascular retinal layers were visualized and segmented. The software calculates RPC VD as previously described.21 Briefly, RPC VDs were calculated from the superficial peripapillary retinal layers of the RPC
segment, which extend from ILM to RNFL posterior boundary. This setting is utilized to evaluate superficial peripapillary vessels, running parallel to RNFL and radial to optic nerve head and supplied by the central retinal artery (Fig. 1-left). The peripapillary region is defined as a 0.75 mm wide elliptical annulus extending from the optic disc boundary and was divided into six sectors based on the Garway-Heath map22 (Fig. 1-right). RPC VD was defined as the percentage area occupied by the large vessels and microvasculature in the peripapillary region.

Whole and sectorial VDs were analysed. Two investigators (N.B. and P.B.) checked segmentation and image quality before testing VD.

The datasets generated during and/or analysed during the current study are available from the corresponding author upon request.

Statistical analysis

Values were presented as mean ± standard deviation (SD). BCVA was converted into the logarithm of the minimum angle of resolution (LogMAR) units for the statistical analysis.

Data passed the normality test so the analysis of variance (ANOVA) test was used for comparisons between groups, followed by Bonferroni post-hoc test for pair wise comparisons.

In order to compare VD and RNFL changes, we first merged the superonasal with the superotemporal VD and the inferonasal with the inferotemporal VD, so two sectors were obtained: superior and inferior, respectively. Then, as RPC VD is the percentage of area occupied by vessels in the RNFL volume, sectoral VD was normalized for corresponding sectorial RNFL thickness obtaining vascular thickness values (which we called ‘normalized VD’) using the following formula: (sectorial RPC VD * sectorial RNFL thickness)/100.

Statistical significance was assumed for P values < 0.05. GraphPad Instat (V.3a) for Macintosh (GraphPad Software, San Diego, CA, USA) was used for statistical analysis.

RESULTS

Twenty-two male LHON patients were enrolled as follows: eight patients (15 eyes) in the LHON-u group; four patients (eight eyes) in the LHON-e group; five patients (10 eyes) in the LHON-l group and nine patients (16 eyes) in the LHON-ch group. The four patients in the LHON-e group were also included in the LHON-l group, as they were examined twice during their sub-acute (LHON-e and LHON-l) stage of the disease, and were counted each time. Three eyes of three patients were excluded from statistical analysis for poor quality images due to motion artefacts. Thirteen patients carried the mtDNA mutation m.11778G>A/MT-ND4 gene, five patients carried the m.3460G>A/MT-ND1, two patients carried the m.14258G>A/MT-ND6, one patient carried the m.14484T>C/MT-ND6 and one patient carried the m.15222A>G/MT-CTB.

Eight male subjects (eight eyes) were enrolled in the control group. Clinical data from all the groups are summarized in Table 1.

Vessel density analysis

A series of changes characterized the microvascular network as detected during disease progression from LHON-u to LHON-ch stages, through the transition of LHON-e and LHON-l, as shown in Figure 2.

Table 2 summarizes mean ± SD of RPC VD in each sector in LHON groups and controls. ANOVA was statistically significant in every sector analysed (P < 0.0001).

© 2018 Royal Australian and New Zealand College of Ophthalmologists
No statistically significant differences of VD were found between LHON-u and controls in any sector.

In LHON-e stage the VD was significantly reduced in the temporal sector compared with LHON-u and in the temporal and inferotemporal sectors compared with controls.

In LHON-l stage VD was significantly reduced in whole, temporal, superotemporal and inferotemporal sectors compared with LHON-u and controls.

In LHON-ch stage, the VD was reduced in all sectors when compared to all the other stages, including the control group.

Table 3 shows the percentage of VD and RNFL thickness changes of LHON groups in each sector compared to the control group. Moreover, Table 3 shows also the percentage of nasal (average values of inferonasal and superonasal macular sectors, which correspond to temporal VD sector) GC-IPL thickness changes respect to controls.

Considering the LHON-u, there was a slight, but not statistically significant, increase of temporal VD (+2.1% respect to controls), at odds with the other sectors, whereas the RNFL was increased in all sectors (+11.4%, +3.7%, 1.9%, 11.1% respect to controls for the temporal, superior, nasal and inferior sectors, respectively). In the transition to LHON-e, VD became reduced in all sectors except for the superonasal, which was increased, whereas RNFL was increased in all sectors. Subsequently, in the transition to LHON-l VD displayed the same pattern of reduction, whereas the RNFL temporal sector started to be reduced. Finally, in the LHON-ch the VD and RNFL were greatly reduced in all sectors.

Table 4 shows the normalized VD changes respect to controls. Changes of RNFL thickness, nasal GC-IPL thickness and normalized VD through the different stages of disease, as compared to Controls, are summarized in the graph and depicted in Figure 3.

This analysis revealed an asynchronous pattern of changes in temporal VD and RNFL thickness, in contrast to the remaining sectors, where a more synchronous increase/decrease of VD and RNFL thickness was observed. In fact, temporal VD and RNFL appeared to be both increased in LHON-u and at conversion to LHON-e. Subsequently, evolving into LHON-l, VD was rapidly reduced as opposed to a delayed thinning of RNFL in this sector. Temporal VD and nasal GC-IPL thickness showed similar early reduction.

DISCUSSION

This study reveals significant peripapillary microvascular changes over the different stages of disease progression in patients affected by LHON. The

<table>
<thead>
<tr>
<th>Eyes (number)</th>
<th>LHON-u</th>
<th>LHON-e</th>
<th>LHON-l</th>
<th>LHON-ch</th>
<th>Controls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.38 ± 9.9X</td>
<td>28.75 ± 15.64</td>
<td>29 ± 13.6</td>
<td>33.22 ± 10.69</td>
<td>32 ± 6.16</td>
<td>ns</td>
</tr>
<tr>
<td>Genotype mutation (number of eyes)</td>
<td>11778G>A (6)</td>
<td>11778G>A (6)</td>
<td>11778G>A (8)</td>
<td>11778G>A (11)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>BCVA (LogMAR)</td>
<td>-0.02 ± 0.01</td>
<td>0.95 ± 0.73</td>
<td>1.26 ± 0.46</td>
<td>0.95 ± 0.64</td>
<td>-0.03 ± 0.02</td>
<td><0.0001</td>
</tr>
<tr>
<td>MD (dB)</td>
<td>105.53 ± 9.24 †</td>
<td>71 ± 16.66 †</td>
<td>55.5 ± 11.95</td>
<td>44.5 ± 11.03</td>
<td>68.33 ± 10.75 †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RNFL av</td>
<td>128.13 ± 17.10 †</td>
<td>144.3 ± 19.13 †</td>
<td>144.5 ± 15.54 †</td>
<td>81.61 ± 19.69</td>
<td>123.5 ± 13.83 †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RNFl t</td>
<td>140.2 ± 16.38 †</td>
<td>159.6 ± 17.39 †</td>
<td>152.8 ± 20.53 †</td>
<td>79.17 ± 17.78</td>
<td>126.3 ± 13.17 †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RNFl n</td>
<td>74.8 ± 12.61 † †</td>
<td>82.88 ± 10.66 † †</td>
<td>87.13 ± 11.99 † †</td>
<td>61.44 ± 10.91</td>
<td>73.39 ± 11.09 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL av</td>
<td>84.93 ± 4.8 † † †</td>
<td>68.14 ± 9.11</td>
<td>59.75 ± 5.36</td>
<td>51.61 ± 6.07</td>
<td>84.52 ± 6.03 † † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL in</td>
<td>84.6 ± 4.8 † † † † †</td>
<td>63.5 ± 8.15 † † † †</td>
<td>56 ± 4.78 † † † †</td>
<td>49.01 ± 5.29 † † †</td>
<td>84.21 ± 6.25 † † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL sn</td>
<td>86.26 ± 5.58 † † † † †</td>
<td>65.37 ± 11.32 † † † †</td>
<td>58.12 ± 6.4 † † †</td>
<td>50.43 ± 6.04 † †</td>
<td>85.91 ± 5.98 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL s</td>
<td>86.8 ± 5.75 † † † † †</td>
<td>72.62 ± 10.58 † † † †</td>
<td>62.75 ± 7.45 † † † †</td>
<td>51.43 ± 7.16 † †</td>
<td>85.3 ± 6.18 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL st</td>
<td>84.8 ± 5.33 † † † † †</td>
<td>69.75 ± 10.58 † † †</td>
<td>63.5 ± 6.9 † † † †</td>
<td>50.43 ± 6.09 † †</td>
<td>84.69 ± 6.8 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL t</td>
<td>86.6 ± 4.13 † † † † †</td>
<td>67.12 ± 8.42 † † †</td>
<td>62.5 ± 6.48 † † †</td>
<td>52 ± 4.85 † †</td>
<td>83.69 ± 6.11 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>GC-IPL i</td>
<td>83.2 ± 4.36 † † † † †</td>
<td>65.25 ± 9.99 † † † †</td>
<td>61.5 ± 7.15 † † † †</td>
<td>51.87 ± 6.26 † †</td>
<td>83.69 ± 6.76 † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>AL (mm)</td>
<td>24.64 ± 1.23</td>
<td>23.15 ± 0.06</td>
<td>22.34 ± 0.9</td>
<td>22.77 ± 0.65</td>
<td>23.87 ± 0.82</td>
<td>ns</td>
</tr>
</tbody>
</table>

†Bonferroni post-hoc test P < 0.001 versus LHON-ch. †Bonferroni post-hoc test P < 0.01 versus LHON-ch. †Bonferroni post-hoc test P < 0.05 versus LHON-l. ††Bonferroni post-hoc test P < 0.05 versus control. †††Bonferroni post-hoc test P < 0.05 versus LHON-ch. ††††Bonferroni post-hoc test P < 0.01 versus LHON-l. †††††Bonferroni post-hoc test P < 0.001 versus LHON-e. ††††††Bonferroni post-hoc test P < 0.001 versus LHON-l. †††††††Bonferroni post-hoc test P < 0.001 versus control. §§§ANOVA. AL, axial length; av., average; BCVA, best-corrected visual acuity; ch, chronic; dB, decibel; e, early phase (between 1 and 2 months); GC-IPL, macular ganglion cell-inner plexiform layer; i, inferior; l, late phase (between 4 and 6 months); LHON, Leber hereditary optic neuropathy; LogMAR, logarithm of the minimum angle of resolution; MD, mean defect; n, nasal; RNFL, ns, not significant; retinal nerve fibre layer; s, superior; t, temporal; u, unaffected carrier.
The changing pattern of RNFL and GC-IPL is consistent with previous works. The key finding is that microvascular changes in the temporal sector, implicating the papillomacular bundle, precede the RNFL and mirror the GC-IPL changes. This argues in favour of an active role played by the retinal microvasculature in the process of disease during LHON conversion that leads to an irreversible wave of axonal injury (RNFL thickening) and an irreversible wave of retinal ganglion cells (RGC) loss (GC-IPL thinning). At late chronic stage a generalized thinning affects retinal microvasculature, RNFL and GC-IPL.

Optic disc microangiopathy is a hallmark of LHON, seen both in asymptomatic carriers and in the symptomatic stage of disease, affecting mostly the temporal region.

We failed to find any VD differences between LHON-u and controls in all sectors analysed. However, when VD was normalized for RNFL thickness, the vascular network in the temporal sectors was increased in LHON-u (Table 4). After conversion, VD was reduced prior to the reduction of RNFL thickness. Relevantly, in parallel to VD reduction also GC-IPL was reduced during the LHON-e sub-acute stage. This pattern highlights that even if a parallel sequence of events occurs, VD and RNFL changes are not simultaneous in the temporal sector, which represents the papillomacular region. Remarkably, VD and GC-IPL instead seem to follow the same rate of reduction suggesting a tighter link of VD with RGCs than with their axons, clearly evident in the area where the pathologic mechanism hits first. In the other sectors a more synchronous increase/decrease of VD and RNFL thickness was observed.

An explanatory hypothesis on the critical role of the vascular component in the LHON pathogenic mechanisms, requires consideration of two key questions:

Table 2. Vessel density (VD) in LHON patients at different stages and in control

<table>
<thead>
<tr>
<th>VD (%)</th>
<th>LHON-u</th>
<th>LHON-e</th>
<th>LHON-I</th>
<th>LHON-ch</th>
<th>Control</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole RPC</td>
<td>62.27 ± 2.2††</td>
<td>59.2 ± 4.3††</td>
<td>56.68 ± 3.2‡‡ ††</td>
<td>46.92 ± 4.4‡‡ † †</td>
<td>63.11 ± 2.9‡ ††</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-N</td>
<td>58.15 ± 4.0††</td>
<td>59.33 ± 4.1††</td>
<td>58.75 ± 3.8††</td>
<td>48.57 ± 5.4‡‡ † †</td>
<td>60.35 ± 3.65‡ †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-IN</td>
<td>62.69 ± 4.8††</td>
<td>67.09 ± 5.4† †</td>
<td>60.9 ± 4.8† †</td>
<td>49.19 ± 8.7‡ † †</td>
<td>64 ± 4.6 †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-IT</td>
<td>65.30 ± 4.0††</td>
<td>62.16 ± 5.4‡‡ † †</td>
<td>58.47 ± 4.21† † † †</td>
<td>47.9 ± 6.6‡ † †</td>
<td>67.87 ± 3.9‡ † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-ST</td>
<td>66.40 ± 2.8† †</td>
<td>62.7 ± 7.8† †</td>
<td>56.33 ± 6.3† † † †</td>
<td>49.08 ± 8.9‡ † †</td>
<td>66.42 ± 4.24† † †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-SN</td>
<td>59.23 ± 5.5† †</td>
<td>62.35 ± 2.85† †</td>
<td>60.7 ± 4.74† †</td>
<td>48.14 ± 8.1‡ † †</td>
<td>59.74 ± 5.13† †</td>
<td><0.0001</td>
</tr>
<tr>
<td>RPC-T</td>
<td>65.23 ± 3.3† †</td>
<td>52.81 ± 5.9† † † †</td>
<td>49.54 ± 4.39† † † †</td>
<td>41.69 ± 4.2‡ † †</td>
<td>63.89 ± 3.59‡ † †</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

ANOVA, †Bonferroni post-hoc test statistically significant versus LHON-u, ‡Bonferroni post-hoc test statistically significant versus LHON-e, §Bonferroni post-hoc test statistically significant versus LHON-I, ††Bonferroni post-hoc test statistically significant versus LHON-ch. RPC radial peripapillary capillaries; SN, superonasal; ST, superotemporal; T, temporal; u, unaffected carrier; VD, vessel density.
1. Why does temporal vessel density increase during the RNFL swelling (LHON-u to pre-conversion stage)?

The metabolic consequences of RGC mitochondrial impairment likely results in axonal transport stasis and swelling, which in turn may produce a stress signalling leading to a local ‘reactive’ microangiopathy, primarily affecting the area of the papillomacular bundle, where a compensatory vascular response possibly develops. This condition may remain in equilibrium, waxing and waning for years, and produces the characteristic fundus changes described in unaffected LHON carriers.\(^{24,25}\) However, after conversion to the sub-acute stage of the disease, the microvascular changes decrease in the temporal sector paralleling RGCs loss, while temporal RNFL tends to remain asynchronously thick, as quantified by VD at OCT measurements in the present study. The relationship between RPC VD and RNFL thickness has been recently studied, suggesting a non-linear correlation.\(^{26}\)

Specifically, an almost linear relationship between increase of RNFL thickness and RPC VD is lost when RNFL thickness crosses a threshold over which there is no further increment of VD.\(^{26}\) However, to fully understand what triggers the disease conversion we currently still lack a longitudinal follow-up study of multiple patients in the pre-clinical stage immediately preceding the visual loss. A qualitative study of one single patient in the early sub-acute stage (10 days after visual symptoms onset) in one eye and in the pre-symptomatic stage in the other eye found dilated peripapillary microvasculature in the temporal side of the optic disc.\(^{20}\) The authors hypothesized that dilated peripapillary capillaries may derive from a vasodilating signalling due to RNFL shortage of ATP.

Differently, another recent case report qualitatively analysed longitudinal changes in RPC in correlation to RNFL in a patient followed from the acute and presymptomatic stages in the two eyes, respectively.\(^{19}\) These authors concluded that temporal RPC defects start to spread once the pseudodema begins to resolve. Our current results link tightly the loss of RPC to that of RGCs at LHON-e stage, when RNFL is still thick and thickness reduction proceeds at slower rate.

2. Why does the temporal vessel density decrease before the loss of fibres noted in the progression to the sub-acute stage?

Our current results, linking in a parallel fashion the decrease of VD and RGCs, as exemplified by GC-IPL thinning, strongly suggest a metabolic relation between RGCs soma and vascular supply. The persistence of axonal swelling, which most probably relates to a stasis of organellar transport, resolves at a slower rate. Lacking a longitudinal follow-up at the crucial transition from pre-clinical to conversion, we can only speculate on what triggers conversion and we cannot exclude that the VD reduction is only a consequence of optic nerve atrophy, similarly to other chronic optic neuropathy.\(^{10-18}\) However, one hypothesis to explain the catastrophic rapidity of disease onset, which occurs in days to weeks may implicate some anatomical considerations. The laminae portion of the optic nerve is limited in being...
able to anatomically accommodate axonal swelling and this may lead to some extent a compartment issue. A mechanical component may be envisaged, in which mounting swelling of axons entering the optic nerve head raises post-laminar tissue pressure. Relevantly, small discs are a risk factor in LHON. In this scenario, the insufficiency of vascular supply occurring when VD reaches the plateau despite the still increasing RNFL thickness may trigger the catastrophic propagation of RGC neurodegeneration and loss, followed only at later stages by axonal loss. Thus, a mixed mechanical/metabolic mechanism may fit the hypothetical sequence of the events characterizing the LHON conversion. A small or congested disc could predispose to a metabolic recursive process that we might call a metabolic compartment syndrome. The small and most vulnerable axons crowded together, in a condition of incongruent vascular supply precipitated by decrease of VD, might, through the reiterative release of ROS, initiate a domino effect that rapidly propagates with a precise pattern. This sequence of events fits the current interpretation of the stroke-like events documented in mitochondrial encephalopathy, lactic acidosis, stroke-like episodes (MELAS), which is characterized by lack of true ischemia whereas cytotoxic intracellular edema occurs.

The present results, it should be noted, do not parallel our recent findings regarding choroidal thickness changes seen in LHON. This previous publication demonstrated that the RNFL and choroid in LHON underwent an increase in thickness, followed by permanent thinning, and the RNFL changes preceded those affecting the choroid. The choroidal changes may simply have been a surrogate marker of RGC and axonal atrophy and a remote vascular compensatory adaptation.

The cross-sectional nature of the present study has limitations. A longitudinal study might document the dynamic changes over time, thus confirming the hypothesized scenario. However, we do have follow-up time points in a few patients in our study. Many of our patients had both eyes studied and this can be a statistical confounder, however LHON is such a rare disease that having more eyes to study was an offsetting advantage. Moreover, we did not measure VD in the macular region, and further studies will be necessary to evaluate changes of the microvasculature in order to detect if they follow or precede the GCLs changes. Another limitation is related to genetic heterogeneity of the patients studied. A meaningful stratification by mutation was thus not performed, since the 11778G>A/MT-ND4 was over-represented.

Overall, the present study allowed, for the first time, to quantify the peripapillary vascular changes seen at the different stages of LHON natural history and our findings highlight the vascular role in the pathogenesis of the disease. Measurements of vascular changes in LHON may become a useful biomarker to monitor the disease.
progression, evaluate therapeutic efficacy and elucidate pathophysiology.

REFERENCES