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in chronic migraine with medication
overuse headache: a study of
thalamocortical activation and
lateral cortical inhibition
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Abstract

Background: It is unclear whether cortical hyperexcitability in chronic migraine with medication overuse headache

(CM-MOH) is due to increased thalamocortical drive or aberrant cortical inhibitory mechanisms.

Methods: Somatosensory evoked potentials (SSEP) were performed by electrical stimulation of the median nerve (M),

ulnar nerve (U) and simultaneous stimulation of both nerves (MU) in 27 patients with CM-MOH and, for comparison, in

23 healthy volunteers (HVs) of a comparable age distribution. We calculated the degree of cortical lateral inhibition using

the formula: 100 – [MU/(MþU)� 100] and the level of thalamocortical activation by analyzing the high frequency

oscillations (HFOs) embedded in parietal N20 median SSEPs.

Results: Compared to HV, CM-MOH patients showed higher lateral inhibition (CM-MOH 52.2%� 15.4 vs. HV

40.4%� 13.3; p¼ 0.005), which positively correlated with monthly headache days, and greater amplitude of pre-

synaptic HFOs (p¼ 0.010) but normal post-synaptic HFOs (p¼ 0.122).

Conclusion: Our findings suggest that central neuronal circuits are highly sensitized in CM-MOH patients, at both

thalamocortical and cortical levels. The observed changes could be due to the combination of dysfunctional central pain

control mechanisms, hypersensitivity and hyperresponsiveness directly linked to the chronic intake of acute migraine

drugs.
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Introduction

Medication-overuse headache (MOH) is a secondary
headache attributed to chronic overuse of analgesics
or specific antimigraine drugs (1). According to the
diagnostic criteria in the International Classification of
Headache Disorders, 3rd edition (ICHD-3) (1), to diag-
nose MOH, patients must have a pre-existing primary
headache, headache on �15 days per month and regu-
lar overuse of one or more acute medications for �3
months (1). Thresholds for overuse vary with medica-
tion classes: �10 days per month for triptans, ergots,
opioids, combination analgesics or combinations of
multiple drug classes; �15 days per month for simple
analgesics or non-steroidal anti-inflammatory drugs
(NSAIDs) (1). It has been estimated that medication
overuse headache accounts for up to 50% of the chron-
ic headaches and is most prevalent in chronic migraine
(CM) (2).

Despite the clear association between headache
chronification and overuse of symptomatic drugs, the
pathophysiology of medication overuse headache is
still poorly understood (3). According to studies con-
ducted on rodents, persistent administration of suma-
triptan or analgesics enhances susceptibility to evoked
cortical spreading depression (4–7) and causes central
sensitization (8) with increased activation of the trigem-
inal nucleus caudalis as a consequence (6). Evidence
from clinical studies also supports cortical hyperexcit-
ability in MOH. CM patients with MOH (CM-MOH)
have increased sensitization of somatosensory cortical
evoked responses and potentiation to repetitive non-
painful stimuli (9). Compared to CM-MOH patients,
CM patients without medication overuse display an
initial sensitization but no response potentiation when
the stimulation is repeated (10,11). Analyzing somato-
sensory evoked potentials (SSEP), we observed that the
initial sensitization in CM patients is not accompanied
by altered levels of thalamocortical activation (12) or
cortical lateral inhibition (13).

It would thus be of interest to know whether the
peculiar electrophysiological pattern of CM-MOH
patients is due to increased thalamocortical drive or
to aberrant cortical lateral inhibition. In humans, thala-
mocortical drive can be easily evaluated by analyzing the
high-frequency oscillations (HFOs) (around 600Hz)
embedded in the broad-band SSEPs elicited by median
nerve stimulation at the wrist (14). Furthermore, studies
in humans and animal have indicated that the amplitude
of the cortical component of the SSEPs obtained during
simultaneous stimulation of two adjacent nerves is
smaller than the sum of the amplitudes of the SSEPs
elicited by separate stimulation of each nerve, which is
explained by lateral inhibition mechanisms at the corti-
cal level (15,16).

Using SSEPs, we compared therefore cortical lateral
inhibition and HFOs in CM-MOH patients and in
healthy volunteers. To calculate the percentage of lat-
eral inhibition, we stimulated the median (M) and ulnar
(U) nerves and recorded low-frequency (LF) SSEPs
from the parietal cortex, after which we compared the
amplitude of LF-SSEPs M and U components stimu-
lated simultaneously with the arithmetic sum of the
amplitude of corresponding SSEPs elicited by stimulat-
ing each nerve separately. In addition, we assessed
somatosensory thalamocortical drive by measuring
the early HFOs embedded in the broad-band median
nerve SSEPs.

Methods

Participants

Twenty-seven patients (mean� SD, 38.1� 14.4 years;
23 women) who received a diagnosis of chronic
migraine with medication overuse headache, according
to the ICHD-3 diagnostic criteria (1), were recruited
among consecutive patients attending the Headache
clinic of Sapienza University of Rome Polo Pontino
(ICOT, Latina). All patients had migraine without
aura as the primary headache. None of them were
under prophylactic therapy or had taken one in the
last 3 months before the study. We collected the
patients’ clinical characteristics: duration of the migraine
disease (years), days with headache (n per month), days
of tablet intake (days per month), monthly number of
days with tablet intake (n per month), type and number
of acute medications and headache severity (visual ana-
logue scale 0–10) (Table 1). All patients had filled in a
headache diary mailed when they took an appointment
at the consultation enclosed for at least 1 month before
the first visit.

For comparison, we recorded a cohort of 23 healthy
volunteers (HVs) of comparable age and gender distri-
bution (35.1� 9.0 years; 18 women). Inclusion criteria
for the control group were no personal or familial his-
tory (first- and second-degree relatives) of migraine, no
regular medication intake except for the contraceptive
pill, no neurological or psychiatric illness and no other
overt medical condition. Each participant in the study
went through a thorough neuro-ophthalmological eval-
uation that included measuring intraocular pressure,
best-corrected visual acuity, slit-lamp biomicroscopy
and binocular indirect ophthalmoscopy. To minimize
variability due to hormonal changes, women were
recorded outside their premenstrual or menstrual
periods.

Both patients and controls were recorded in the
same laboratory and period of the day. They all gave
their written informed consent to participate in
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the study. The study was approved by the local ethics

committee and conducted in adherence with the

Declaration of Helsinki.

Data acquisition

Three sessions of SSEPs recordings, separated by a

5-min rest period, were performed by two investigators

(FC and CA): M nerve stimulation, U nerve stimula-

tion and simultaneous stimulation of both nerves

(MU). SSEPs were obtained using the same procedure

as in our previous studies (13,17). Constant current

square wave pulses (0.2ms width, cathode positioned

proximally) were used as a stimulus, with intensity set

at 1.2 times the motor threshold and a repetition rate of

2.2Hz. Three active electrodes were positioned: the

first over Erb’s point ipsilateral to the stimulus and

referenced to the contralateral side; the second over

the fifth cervical spinous process (Cv5) and the third

over the contralateral parietal area (C30, 2 cm posterior

to C3 in the International 10–20 system), both refer-

enced to Fz; a ground electrode was placed on the right

wrist. Digitimer (Digitimer Ltd, Welwyn Garden City,

UK) (band-pass 0.05–2500Hz, gain 1000) was used to

amplify SSEPs signals, which were recorded with a

CED power 1401 device (Cambridge Electronic

Design Ltd, Cambridge, UK). Recordings were carried

out in the afternoon (between 2 PM and 6 PM) with the

participants sitting relaxed in a comfortable chair in a

well-lit room with eyes open. They were instructed to

concentrate on the stimulus-induced thumb movement.

Next, 300 consecutive sweeps of 50ms, sampled at

5000Hz, were collected for each session. Two investi-

gators (GC and GS) analyzed all the recordings offline

using Signal, version 4.11 (Cambridge Electronic
Design Ltd). The investigators were blinded to the par-
ticipants’ diagnoses. The Signal artifact rejection tool
automatically rejected artifacts with an amplitude
exceeding 90% of the analog-to-digital converter
range. All rejected artifacts were verified by visual
inspection.

LF-SSEPs and lateral inhibition

Three hundred artifact-free evoked responses were
averaged in each subject for each of the three sessions.
The SSEP components N9, N13, N20, P25 and N33
were identified according to their latencies and after
digital filtering of the signal between 0 and 450Hz.
We measured the peak-to-peak amplitude of all the
SSEP components and calculated the degree of lateral
inhibition using the formula 100 – [MU/(MþU)
� 100], where MU is the amplitude of the SSEP com-
ponent obtained after simultaneous stimulation of M
and U nerves and MþU is the arithmetic sum
obtained by stimulating separately these nerves.

SSEP high-frequency oscillations (HFOs)

Digital zero-phase shift band-pass filtering between 450
and 750Hz (Barlett-Hanning window, 51 filter coeffi-
cients) was applied off-line on SSEPs elicited by the M
nerve alone to obtain the HFOs embedded in parietal
N20 SSEP component. The method utilized is
described widely in our previous study (12). Two sep-
arate bursts of HFOs were identified in most record-
ings: an early pre-synaptic burst within the latency
range of the ascending slope of the conventional N20
SSEP component and a late post-synaptic burst within
the latency of the descending slope of N20, sometimes
extending into the ascending portion of the N33 com-
ponent. The decrease of amplitude and frequency
between the pre-and post-synaptic bursts generally
allows for their visual separation. When a clear distinc-
tion between the two components was not possible, we
considered the bursts before the N20 peak as pre-
synaptic and those after this peak as post-synaptic.
Thereafter, we eliminated the stimulus artifact and
measured the latency of the negative oscillatory maxi-
mum and the maximum peak-to-peak amplitude for
pre-and post-synaptic bursts.

Statistical analysis

We applied the SPSS, version 25.0 (IBM Corp.,
Armonk, NY, USA) for all analyses. Anderson–
Darling or Kolmogorov–Smirnov tests were used on
each electrophysiological parameter to assess the
normal distribution of data. A two sample t-test was
used for data that were normally distributed; otherwise,

Table 1. Demographics and clinical features.

HV

(n¼ 23)

MOH

(n¼ 27)

Women (n) 18 23

Age (years) 35.1� 9.0 38.1� 14.4

Duration of the migraine

disease (years)

22.7� 12.8

Days with headache/month (n) 24.3� 5.2

Days with tablet intake/month (n) 20.8� 6.9

Total tablet intake/month (n) 27.8� 7.0

Headache severity (0–10) 7.9� 1.6

Median nerve motor threshold (mA) 8.1� 2.4 10.3� 5.6

Ulnar nerve motor threshold (mA) 8.3� 2.8 9.5� 5.41

Triptan overusers N¼ 8

NSAID overusers N¼ 14

Combination medication overusers N¼ 5

Data are expressed as the mean� SD. HV, healthy volunteers; CM-MOH,

chronic migraine patients with medication overuse; N, number of sub-

jects; NSAID, non-steroidal anti-inflammatory drug.
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a non-parametric Mann–Whitney test was employed.

Pearson’s correlation coefficient was used to search

for correlations between clinical variables (duration

of chronic and of overuse phase in months, days with

and total acute medication intake per month, days with

headache per month, history of primary headache,

days since the last headache, and mean severity of

headache per month) and electrophysiological data

that were significant different between groups.
General linear models were developed to evaluate

the age and sex effects, they included significant elec-

trophysiological parameters and age as covariates and

sex and group as factors.
P< 0.05 was considered statistically significant.

Results

Demographics and clinical features are shown in

Table 1. Assessable SSEPs recordings were obtained

from all participants. No statistical differences in the

motor threshold, for both nerves (M and U), were

observed between HV and MOH patients.

LF and HFOs of SSEPs

Grand-average N9, N13, N20, P25 and N33 latencies

and peak-to-peak amplitudes of N9 and N13 did not

differ between groups following stimulation of M or U

nerves (Table 2).
However, peak-to-peak amplitudes of N20-P25 and

P25-N33 were significantly greater in the CM-MOH

group (N20-P25 M: t¼�2.08, p¼ 0.007; P25-N33 M:

t¼�4.12, p< 0.001; N20-P25 U: t¼�2.09, p¼ 0.007;

P25-N33 U: t¼�3.36, p¼ 0.002). Similarly, after M

stimulation the amplitude of each of the first three

blocks of averaged responses was significantly larger

in CM-MOH patients than in HV (1st block:

t¼�2.04, p¼ 0.047; 2nd block: t¼�3.69, p¼ 0.001;

3rd block: t¼�4.57, p¼ 0.001) (Table 2). Regarding

the change of SSEPs amplitude over the three blocks

of 100 response (i.e. habituation), after M nerve stim-

ulation, CM-MOH patients showed a progressive

increase of the N20-P25 amplitude slope (i.e. deficient

habituation), between block 1 and block 2

(slope¼ 0.17� 0.7, t¼�2.51, p¼ 0.017) and between

block 1 and block 3 (slope¼ 0.19� 0.4, t¼�3.68,

p¼ 0.001) (Table 2).
Latencies of the negative oscillatory maximum peak

for pre-and post-synaptic bursts of somatosensory

HFOs were not different between the two groups.

However, CM-MOH had a greater peak-to-peak

amplitude for the pre-synaptic component but not for

the post-synaptic component compared to HV (pre-

HFO t¼�2.71, p¼ 0.010; post-HFO U¼ 572,

p¼ 0.79) (Figure 1a and Table 3).

Lateral inhibition of SSEPs

We found no difference between the two groups in the

amplitudes of N9, N13 and N20-P25 SSEP compo-

nents obtained after simultaneous stimulation of M

and U nerves, nor for the arithmetic sum of separate

M and U nerve stimulation (MþU) of the N9 and N13

components (Table 4). However, CM-MOH patients

had a greater peak-to-peak amplitude than HV for the

arithmetic sum of the N20-P25 (t¼�2.57, p¼ 0.014)

Table 2. Latencies and amplitudes of the various somatosensory evoked potential components after median or ulnar stimulation
(mean� SD; 300 averaged responses).

HV (n¼ 23) CM-MOH (n¼ 27)

Median Ulnar Median Ulnar

N9 (ms) 10.0� 0.8 10.6� 1.1 9.7� 0.8 10.4� 0.9

N13 (ms) 13.3� 1.2 14.0� 1.4 13.2� 0.7 13.9� 0.9

N20 (ms) 19.0� 1.1 19.4� 1.3 19.1� 1.0 20.0� 1.1

P25 (ms) 24.0� 2.3 24.7� 2.3 22.8� 2.2 24.0� 2.1

N33 (ms) 30.8� 2.7 31.1� 2.6 30.6� 2.3 31.9� 2.0

N9-peak (lV) 2.4� 1.1 1.3� 0.5 2.7� 1.1 1.6� 1.2

N13-peak (lV) 1.7� 0.8 1.0� 0.6 1.8� 0.7 1.2� 0.8

N20-P25 (lV) 1.9� 0.7 1.5� 0.7 2.5� 0.9* 2.2� 1.5*

P25-N33 (lV) 0.8� 0.3 0.8� 0.4 1.5� 0.6* 1.3� 0.5*

1st N20-P25 (lV) 2.4� 0.7 2.8� 0.7*

2nd N20-P25 (lV) 2.2� 0.7 3.1� 0.9*

3rd N20-P25 (lV) 2.1� 0.7 3.1� 0.8*

Slope (block 1–2) –0.22� 0.3 0.17� 0.7*

Slope (block 1–3) –0.6� 0.2 0.19� 0.4*

ICLI 40.4� 13.3 52.5� 15.4*

HV, healthy volunteers; CM-MOH, chronic migraine patients with medication overuse. *p< 0.05 vs. HV.
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and P25-N33 (t¼�5.43, p¼ 0.001) components after

separate stimulation (MþU) and for the P25-N33 com-

ponent (t¼�4.47, p< 0.001) obtained after simulta-

neous stimulation of both nerves (MU) (Figure 2 and

Table 4).
The degree of lateral inhibition was significantly

higher in CM-MOH patients (52.2� 15.4%,

t¼�3.97, p¼ 0.005) than in HVs (40.4� 13.3%)

(Figure 1b and Table 2).

Correlation analyses

In patients with CM-MOH, Pearson’s correlation tests

revealed that the percentage of lateral inhibition was

positively correlated with monthly headache days

(r¼ 0.54, p¼ 0.003) (Figure 3). The total monthly

number of tablets taken and the number of monthly

days with tablet intake were negatively correlated with

amplitude of pre-synaptic HFO (r¼�0.41, p¼ 0.04;

Figure 1. (a) Maximal amplitude (mean� SD) of pre-synaptic (Pre-HFO) and post-synaptic (Post-HFO) components of somato-
sensory evoked potential (SSEP) high-frequency oscillations (HFOs) in healthy volunteers (HV) and in chronic migraine patients with
medication overuse headache (CM-MOH). (b) Histogram showing the mean percentage of lateral inhibition 100 – [(MU/MþU)� 100
for the SSEP N20–P25 component in healthy volunteers (HV) and in chronic migraine patients with medication overuse headache
(CM-MOH). M, median nerve; U, ulnar nerve.

Table 3. Latencies of maximum negative peak and maximum peak-to-peak amplitudes (mean� SD) of the pre-synaptic and
post-synaptic high-frequency oscillations embedded in median nerve somatosensory evoked potentials.

HV (n¼ 23) CM-MOH (n¼ 27)

Pre-synaptic Post-synaptic Pre-synaptic Post-synaptic

Latency of maximum negative peak (ms) 15.9� 1.5 23.0� 2.7 16.7� 1.3 23.07� 2.3

Maximum peak-to-peak amplitude (lV) 0.07� 0.03 0.08� 0.02 0.10� 0.05* 0.10� 0.08

HV, healthy volunteers; CM-MOH, chronic migraine patients with medication overuse. *p< 0.05 vs. HV.

Table 4. Amplitudes of the various somatosensory evoked potential components (mean� SD) after simultaneous median and ulnar
nerve stimulation (MU) or summed stimulation of these nerves (MþU) (300 averaged responses).

HV (n¼ 23) CM-MOH (n¼ 27)

MU MþU MU MþU

N9-peak (lV) 1.9� 1.0 3.6� 1.7 1.9� 1.4 3.5� 1.5

N13-peak (lV) 1.5� 0.7 2.8� 1.2 1.8� 0.8 2.5� 0.8

N20-P25 (lV) 1.9� 0.9 3.4� 1.1 2.3� 1.1 4.6� 2.1*

P25-N33 (lV) 0.8� 0.5 1.4� 0.4 1.6� 0.8* 2.4� 0.8*

HV, healthy volunteers; CM-MOH, chronic migraine patients with medication overuse. *p< 0.05 vs. HV.

Sebastianelli et al. 5



r¼�0.44, p¼ 0.02, respectively) (Figure 4). No other

correlation emerged between neurophysiological

parameters and the other clinical features.

Discussion

The present study aimed to investigate subcortico-

cortical excitability in patients with CM and medication

overuse (CM-MO) through the analysis of different

neural circuits along the somatosensory pathway.
It was previously observed that the level of excita-

tion of the somato-sensory cortex in CM-MOH does

not fluctuate between the ictal initial sensitization and
the interictal lack of habituation as occurs during epi-
sodic migraine cycles, but is locked in a pre-ictal state,
where hypersensitivity (due to sensitization) and hyper-
responsiveness (due to deficient habituation) coexist
(9). We confirmed this here, showing that CM-MO
patients have a higher cortical activation than healthy
controls, as reflected by a greater amplitude of the
grand-average N20-P25 cortical component and of
each of the three sequential blocks of averaging,
together with a steeper amplitude slope (i.e. deficient
habituation).

Figure 2. Amplitudes (mean� SD) of (a) N20-P25 and (b) P25-N33 components of low-frequency somatosensory evoked potentials
in healthy volunteers (HV) and in chronic migraine patients with medication overuse headache (CM-MOH). M, median nerve; U, ulnar
nerve. MU, simultaneous median and ulnar nerve stimulation; MþU, arithmetic sum of the amplitude elicited by stimulating median
and ulnar nerve separately.

Figure 3. Correlation between the monthly headache days and the mean percentage of lateral inhibition 100 – [(MU/MþU]� 100 in
chronic migraine patients with medication overuse headache (CM-MOH).
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The present study adds the following novel findings:

(i) Compared to HV, CM-MOH patients have a

higher amplitude for the arithmetic sum of the

N20-P25 and P25-N33 components after separate

median (M) or ulnar (U) stimulation (MþU) and

a greater P25-N33 amplitude after simultaneous

stimulation of both nerves (MU).
(ii) The degree of cortical lateral inhibition, evaluated

as the ratio between MU and MþU amplitudes,

is significantly higher in CM-MOH patients than

in HVs and the percentage of lateral inhibition

positively correlates with monthly headache days.
(iii) CM-MOH patients have larger pre-synaptic

HFOs than HVs, indicating a higher thalamocort-

ical drive, but normal post-synaptic, primarily cor-

tical, HFOs.

SSEPs recorded from the scalp reflect the glutamate-

mediated depolarization of neurons in layers 3 and 2 of

the somatosensory cortex (18). These neurons receive

at their initial axon segment input from cortical axo-

axonic cells, a subtype of GABAergic interneurons that

control the range of their activation (19,20). Axo-

axonic cells with the largest lateral axonal field

(>700mm) mediate the short-range lateral inhibition

between cortical columns (21). Lateral inhibition is

one of the mechanisms playing a pivotal role in the

processing of incoming sensory stimuli (22).
From an electrophysiological point of view, lateral

inhibition fails when the response from converging

inputs is larger than the sum of the responses to each

input separately (15,16,23–25). We have previously

investigated lateral inhibition in episodic migraine

and CM patients without a history of medication over-

use. While in CM the degree of lateral inhibition was

normal (13), it was reduced in episodic migraine

between attacks, but improved with the proximity of

an attack (17,26), and was proportional to somatosen-

sory thalamocortical activity (17). Here, we show that,

compared to HVs, CM-MOH patients have a larger

degree of lateral inhibition combined with a greater

somatosensory thalamocortical drive. They also have

larger amplitudes of the cortical responses both for

the arithmetic sum after separate stimulations

(MþU) (N20-P25 and P25-N33) and the simultaneous

peripheral nerve stimulations (MU) (P25-N33). Such a

response pattern suggests that central neuronal circuits

of the somatosensory system are highly sensitized in

CM-MOH patients, especially at the cortical level.

Central sensitization occurs via adaptive changes in

circuits that regulate ascending sensory transmission

and results in a net amplification of nociceptive and

innocuous afferent inputs (8,27).
Several studies have suggested that central sensitiza-

tion in CM-MOH chiefly involves structures outside

the trigeminal system, probably at the supraspinal

level (28,29). For instance, CM-MOH patients had

enhanced cephalic and extracephalic nociceptive

responses, while they had no modification of nocicep-

tive blink reflexes (28). Moreover, they had sensitized

spinal noxious flexion reflexes (29) and pain-related

cortical potentials (30), which were both normalized

after withdrawal from the overused drugs (29,30).

Insufficient descending inhibition and thus decreased

antinociceptive activity from supraspinal structures

were hypothesized to participate in the sensitization

of spinal cord pain processing (29). In CM-MOH,

supraspinal pain control centers, such as the periaque-

ductal grey (31) and thalamic nuclei (32), were found

to have adaptive grey matter changes and abnormal

connectivity with other pain-modulatory (frontal)

regions (33,34).
Grey matter volume was increased in the thalamus

as a whole and in all thalamic subnuclei, including the

ventroposterior-lateral/medial and intralaminar nuclei

Figure 4. Correlation between the mean amplitude of pre-synaptic high-frequency oscillations (HFOs) and total monthly (a) and
days with (b) tablet intake in chronic migraine patients with medication overuse headache (CM-MOH).

Sebastianelli et al. 7



relaying non-painful somatosensory information, in
CM-MOH patients compared to chronic myofascial
pain and healthy controls (32). In a fluorodeoxyglucose-
positron emission tomography study of CM-MOH, the
bilateral thalamus was described as hypometabolic, which
reversed to almost normal glucose uptake after analgesic
withdrawal (34).

Grey matter volume in the periaqueductal grey was
also greater in CM-MOH patients than in healthy con-
trols (31). Nevertheless, when comparing CM-MOH
patients to CM patients without medication overuse,
no significant differences in neurotransmitters level
(GABA and glutamate) were observed in the periaque-
ductal grey, while a significant difference emerged for
both neurotransmitters when CM patients (both with
and without medication overuse) were compared with
episodic migraine patients and healthy controls (35).

Furthermore, compared to CM patients without
medication overuse, CM-MOH patients had increased
grey matter volume in left temporal pole/parahippo-
campus and decreased volume in orbitofrontal cortex
and left middle occipital gyrus (36), while no differen-
ces emerged in the functional connectivity between the
right caudate nucleus and other brain regions involved
in pain perception (37). Finally, in comparison with
other chronic pain disorders, MOH patients were char-
acterized by hyperconnectivity of the saliency network
(33). This network has been found to exhibit alterations
in functional connectivity with reward-related circuits;
specifically, the nucleus accumbens and rostral dorsal
putamen (38), and hyperconnectivity with habenula
(involved in anti-reward circuit) (39).

Taken together, these results reflect functional and
morphological reorganization of subcortical and corti-
cal structures due to central sensitization and dysfunc-
tioning central pain control mechanisms in CM-MOH
patients (32,40,41).

Pre-synaptic somato-sensory HFOs and SSEP habit-
uation clearly distinguish CM-MOH patients from CM
patients without medication overuse: while the former
have increased HFOs and deficient habituation, these
electrophysiological markers were shown to be normal
in the latter (12).

In previous studies, we have shown that 5Hz repet-
itive transcranial magnetic stimulation over the motor
cortex had a paradoxical increased inhibitory effect on
motor evoked potentials in patients with CM-MOH
(42), which was restored to physiological potentiation
effect after drug withdrawal and in proportion with the
percentage reduction in monthly headache days (43).
The different neurophysiological patterns between
CM-MOH and CM and the reversal of the neurophys-
iological dysfunction after medication withdrawal
indicates that the two patient groups, despite a similar

clinical phenotype, have different learning and memory
processes with different short-term synaptic plasticity
probably related to the different mechanisms underly-
ing migraine chronification, which in CM-MOH
patients is closely related to medication overuse (42,43).

Chronic exposure to acute anti-migraine medication
in rodents modifies peripheral nociceptors, amplifies
central circuits, increases susceptibility to cortical
spreading depression (6) and suppresses descending
antinociceptive system (3,44–46), which results in facil-
itation of trigeminal nociceptive transmission via up-
regulation of the CGRP system (4,47–51) and upstream
in central sensitization of third-order neurons in the
thalamus (52). In clinical studies, CM-MOH patients
overusing NSAIDs had greater cortical inhibition than
episodic migraineurs, contrary to triptans overusers
(53), but larger pain-related cortical potentials (28).
Of note, long-term use of acute headache medication
may disrupt the function of central serotonin (4,45) and
the mesolimbic dopamine pathway (54), which respec-
tively may favour cortical sensitization and overuse
behaviour.

Whether the increased lateral inhibition in CM-
MOH is a brain state (i.e. secondary effects to the med-
ication overuse and/or to central sensitization) or a
brain trait that predisposes a person to enter the vicious
circle of medication overuse remains to be determined.
The fact that, in the present study lateral inhibition was
positively correlated with monthly headache days
rather favours the hypothesis of a modified brain
state where lateral inhibition would increase as an
attempt to counteract the persistent sensitization and
hyper-responsiveness of the CM-MOH brain.
Admittedly, this hypothesis is not supported by the
lack of correlation between the degree of lateral inhi-
bition and monthly days and number of tablets taken
or headache severity. Studying lateral inhibition before
and after withdrawal of medication overuse might help
to better understand its role in CM-MOH and to deter-
mine whether its augmentation is permanent or
reversible.

An intriguing finding in the present study is the
inverse relationship between thalamocortical activity
(pre-synaptic HFOs) and acute medication consump-
tion. Given that thalamocortical drive seems normal
in CM without medication overuse, one might expect
a pathogenic effect of the overconsumed drugs and
thus a positive correlation with thalamo-cortical activ-
ity in CM-MOH. The apparent paradox could, howev-
er, be explained in part by the differential physiological
effect that some drugs can have on thalamic and tha-
lamocortical terminal activity (55). For instance, psilo-
cybin, a 5-hydroxytryptamine 2A receptor agonist, was
found to decrease thalamic blood flow (56), contrasting
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with an increase of functional thalamocortical connec-

tivity (57). Whatever the explanation might be, despite

the negative correlation in individual CM-MOH

patients, medication overuse seems unable to genuinely

decrease average thalamo-cortical drive at the group

level, probably because of the brain’s pervasive and

persistent state of central sensitization.
We acknowledge that the present study has some

limitations. First, we did not screen patients for allo-

dynia, and we cannot exclude that this might have

influenced our neurophysiological results. Another

potential weakness of the study is that we did not

record patients after drug withdrawal or analyze

patients with MOH and other primary headaches. As

a result, we cannot completely rule out the possibility

that our findings may be influenced not only by

medication-induced effects, but also by the pathophys-

iological factors related to the underlying primary

headache. However, the fact that, in our previous

study with the same paradigm (13), we observed a dif-

ferent behaviour in CM patients without medication

overuse is against this and supports a primarily

medication-induced effect. To gain further clarity on

this matter, future studies should focus on analyzing

MOH patients both before and after withdrawal from

medication.

Finally, our relatively small sample size precluded a
subanalysis of patients according to the type of over-
used medication.

Conclusions

In conclusion, we show that central neuronal circuits
are highly sensitized in CM-MOH patients, at the tha-
lamocortical and, even more so, at the cortical level.
The observed changes can be explained by dysfunction-
al central pain control mechanisms, hyper-sensitivity
(due to sensitization) and hyper-responsiveness (due
to deficient habituation) probably linked to the chronic
administration of acute migraine drugs. To shed light
on the unique aspects of MOH-CM and gain a clearer
understanding of its characteristics and differences
compared to episodic and CM without history of med-
ication overuse, it would be highly interesting to design
a study that directly compares these three groups and/
or follows the patient’s progression from episodic to
chronic migraine.

Finally, comparative recordings in other primary
headaches, such as tension-type headaches, and in
other brain disorders where the level of consciousness
is diminished, such as areas of supportive and palliative
care, would be useful to verify the specificity and sen-
sitivity of these electrophysiological techniques.

Clinical implications

• The levels of thalamocortical activation and lateral cortical inhibition are increased in patients with med-
ication overuse headache.

• These results suggest that subcortico-cortical circuits are highly sensitized in medication overusers.
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