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Purpose: To analyze the influence of OPA1 gene mutations on the optic nerve head (ONH) morphology in
patients with dominant optic atrophy (DOA).

Design: Cross-sectional study.
Participants: Twenty-eight patients with DOA from 11 pedigrees, which were positive for the presence of

OPA1 gene mutations, and 56 age-matched control subjects, were enrolled.
Methods: The ONH of DOA patients was studied by optical coherence tomography and compared with an

age-matched control group of 56 individuals.
Main Outcome Measures: ONH area, and vertical and horizontal diameters.
Results: The ONH analysis of DOA patients showed a significantly smaller optic disc area (P,0.0001),

vertical (P 5 0.018), and horizontal (P,0.0001) disc diameters, compared with controls. Stratification of the
results for the single OPA1 mutation revealed normal ONH area with 2 mutations, whereas the only missense
mutation linked to a “DOA plus” phenotype had the smallest ONH measurements.

Conclusions: The DOA patients carrying OPA1 gene mutations present, as a group, a significantly smaller
ONH compared with the range of size observed in a control population; this feature may be mutation specific.
This observation suggests that OPA1 is involved in shaping the anatomic conformation of the ONH in patients
with DOA. The relevance of OPA1 in regulating apoptosis and modeling the eye development has been recently
shown by others. Thus, mutations in the OPA1 gene may determine the previously unrecognized feature of a
smaller optic disc size and this in turn may have relevance for DOA pathogenesis. Furthermore, OPA1 gene
polymorphic variants may contribute to the normal variability of ONH size in the general population.
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Dominant optic atrophy (DOA), initially described by Kjer,1

is a degenerative disorder that affects retinal ganglion cells.
It is characterized by a slowly progressive bilateral visual
loss that starts in childhood and ultimately leads to optic
atrophy.2 Clinical examination demonstrates temporal or
diffuse pallor of the optic disc, cecocentral scotomas, im-
pairments of color vision and optic disc excavation. Disease
progression may be quite variable even within the same
family, ranging from mild cases with visual acuity that
stabilizes in adolescence, to slowly but relentlessly progres-
sive cases, to cases with sudden, steplike decreases in visual
acuity. This variability of clinical expression is reflected by
the different extent of optic atrophy. Notwithstanding this
variability, DOA is characterized by the early and prefer-
ential involvement of the small fibers in the papillomacular
bundle.2,3 This is also seen in Leber’s hereditary optic
neuropathy (LHON) and is a hallmark of mitochondrial
optic neuropathies.4

Most DOA cases have been associated with mutations
in the OPA1 gene, which encodes a dynamin-related
GTPase targeted to mitochondria.5,6 The mutation spec-
trum include missense, nonsense, deletion/insertion, and
splicing mutations that are distributed throughout the

gene (available: http://lbbma.univ-angers.fr/eOPA1/ ac-
cessed September 28, 2009).7 The large majority of
OPA1 mutations are predicted to generate a truncated
protein, most likely inducing haploinsufficiency, as the
pathogenic mechanism underlying DOA.8 However, a
few missense mutations affecting the GTPase domain
have been recently associated with a syndromic form of
optic atrophy named “DOA plus.” These patients suffer
central and peripheral nerve system pathology as well as
mitochondrial myopathy with accumulation of mitochon-
drial DNA multiple deletions, and a dominant negative
effect has been postulated in these cases.9,10 A number of
asymptomatic carriers of OPA1 mutations have been
identified within families, suggesting incomplete pen-
etrance.11 The OPA1 protein localizes to the mitochon-
drial inner membrane, facing the intermembrane space,
and is involved in multiple functions. A key role played
by OPA1 protein concerns fusion of mitochondria and
mitochondrial network dynamics.12 Furthermore, OPA1
is also involved in oxidative phosphorylation (OXPHOS)
and membrane potential maintenance,8,13–15 as well as
cristae organization and control of apoptosis through the
compartmentalization of cytochrome c.13,16,17
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Optic nerve head (ONH) size and conformation varies in
humans.18 The ONH size has been studied in different
ethnic groups and was linked to the predisposition for some
ophthalmologic disorders. In fact, small optic disc size is a
well-defined risk factor in nonarteritic ischemic optic neuro-
pathy (NAION), as well as ONH drusen and glaucoma.19–22

We have recently shown that large ONH size may be protec-
tive in LHON patients, contributing to the reduced penetrance
and favoring a better visual prognosis in affected individuals.23

The current study sought to investigate the ONH ana-
tomic size in DOA patients carrying OPA1 gene mutations.

Subjects and Methods

Subjects

All DOA patients with a molecularly confirmed diagnosis of OPA1
mutations who were referred to the Department of Neurological
Sciences at the University of Bologna between 2002 and 2006
were invited to participate in this study. Between September and
December 2006, 28 DOA patients from 11 unrelated pedigrees of
European ancestry were recruited and examined by optical coher-
ence tomography (OCT) imaging in both eyes. Exclusion criteria
were the presence in 1 or both eyes of any retinal pathology and/or
optic nerve disease other than DOA, and spherical and/or cylin-
drical refractive errors .5 and .2 diopters, respectively.
The control group (n 5 56) was composed of volunteers

recruited during routine refractive screening without evidence of
either optic disc or retinal disease. All subjects underwent a com-
prehensive ophthalmologic examination, including best-corrected
visual acuity measurement, slit-lamp biomicroscopy, intraocular
pressure measurement, indirect ophthalmoscopy, and ONH pho-
tography. All participants gave their informed consent according to
the Declaration of Helsinki; the study was approved by the internal
review board of the Department of Neurological Sciences at the
University of Bologna.

Instrumentation and Procedures

All measurements were obtained by a commercially available
optical coherence tomographer (Stratus OCT, software version
4.0.1; Carl Zeiss Ophthalmic System Inc., Humphrey Division,
Dublin, CA), as previously reported.23 Optic nerve head analysis
was performed with the Fast Optic Disc acquisition protocol. Six
radial scans in a spoke like pattern are centered on the ONH and
with each radial scan spaced 30° from one to another. Each radial
scan included 128 measuring points. The machine automatically
defined the edge of the optic disc as the end of the retinal pigment
epithelium (RPE)/choriocapillaris and used smoothing with fit to
circle to fill the gaps between scans.

The examination was performed under mydriasis by an expe-
rienced operator (PB) who was masked regarding the clinical
status of each subject. At the beginning of the examination, the
OCT lenses were adjusted for the patient’s refractive error. Polar-
ization was optimized to maximize the reflective signal and we
sought the best centration of the scan with respect to the optic disc.
Internal fixation was used whenever possible; patients with low
central vision were asked to look laterally during the scan acqui-
sition until the image of the optic disc appeared on the screen of
the operator. When the fellow eye allowed it, external fixation was
adopted.

As regards ONH analysis, the automatically defined ONH
boundaries were manually repositioned if the RPE edges were not
correctly identified by the software, so that the resulting ONH

profile did not fit with that observed by fundus photographs. In the
event of peripapillary atrophy of the RPE, the optic disc edge was
no longer identified on the basis of the RPE edge, but on the basis
of the neuroretinal rim, as seen on the fundus photograph. Manual
correction was carried out in 26 out of 28 DOA patients (92.8%)
and in 45 out of 56 control subjects (80.3%).

Sequencing of the OPA1 Gene

For OPA1 gene analysis, genomic DNA was amplified by poly-
merase chain reaction (PCR) with specific primers designed to
amplify all exons and flanking intronic regions as previously
described.24 The PCR reactions were carried out in 50 mL volume
with 50 to 100 ng genomic DNA, 10 mmol/L Tris-HCl pH 8.9, 50
mmol/L KCl, 1,5-3 mmol/L MgCl2, and 200 mmol/L of each
dNTP, 10 pmol of primers, and 1 U AmpliTaq polymerase (Ap-
plied Biosystems, Weiterstadt, Germany). The PCR products were
purified by ExoSAP treatment (USB, Staufen, Germany) and
sequenced employing BigDye Terminator chemistry (Applied
Biosystems). Total RNA was isolated from whole blood using
the PAXgene Blood RNA system (Quiagen, Hilden, Germany).
Single-stranded cDNA was synthesized applying the SuperScript
First-Strand Synthesis System (Invitrogen, Carlsbad, CA) and
overlapping fragments of the OPA1 cDNA were amplified by PCR
before direct DNA sequencing, as described previously.25

Statistical Analysis

For statistical purposes, only 1 eye, randomly chosen, was con-
sidered for each DOA patient and control subject. All statistical
analyses were performed with SPSS 12.0 (SPSS, Inc., Chicago,
IL). Comparisons of mean values of OCT measurements, such as
optic disc area and vertical and horizontal disc diameters between
patients and the control group were performed by means of the
unpaired t-test for parametric data and Mann–Whitney U test for
nonparametric data to calculate the 2-tailed P value. P,0.05 was
accepted as significant in all analyses.

Results

For this study, we collected 28 DOA patients from 11 DOA
pedigrees that segregate a pathogenic mutation in the OPA1 gene
(Tables 1 and 2). The control group consisted of 56 age-matched
subjects. Demographic data (mean age and gender) of patients and
controls are provided in Table 1. No patients were excluded
because of these criteria. The mean age was not statistically
different between these 2 groups.

Table 2 shows the OPA1 mutations in the 11 pedigrees studied
and the results of the OCT measurements stratified for the OPA1
defect, having pooled the patients from different pedigrees with the
same mutation. Most mutations are well-established OPA1 patho-

Table 1. Demographic Characteristics of the Study Groups

Dominant Optic Atrophy
Patients (n 5 28)

Control Groups
(n 5 56)

Subjects age (yrs)
Mean (SD) 36.8 (20.5) 33.8 (9.3)
Range (median) 7–78 (38) 10–49 (35)
Male/female 16/12 31/25

SD 5 standard deviation.
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genic mutations listed in the http://lbbma.univ-angers.fr/eOPA1/
database or have been recently reported.8,9 Two OPA1 mutations
are reported in this study for the first time: c.2815delC (exon 27:
L939 frame shift) and c.2797G.A (exon 27: Val933Ile).

Table 3 and Figure 1 show the ONH parameters for DOA
patients and control group. The comparison of DOA patients with
controls showed a significantly smaller disc area (P,0.0001),
vertical disc diameter (P 5 0.018), and horizontal disc diameter
(P,0.0001) in DOA patients.

However, after stratification of DOA patients by OPA1 muta-
tion (Table 2; Fig 2), we observed significant differences of all
ONH parameters in only 1 mutation (c.98413A.T) and in the
disc area and in the vertical disc diameter in further 2 mutations
(c.2729T.A and c.2708-2711delTTAG). Finally, we observed
statistically significant differences in vertical and horizontal disc
diameter in 2 other mutations (c.2797G.A and c.2815delC, re-
spectively). The lack of significant differences for the other ONH
parameters is most probably owing to the limited number of
subjects available. Nevertheless, disc area and vertical disc diam-
eters showed normal values in subjects with the c.1346_1347insC
and the c.2815delC mutation, both predicted to induce a frame
shift and a truncated protein product. In contradistinction, the only

2 previously reported cases with “DOA plus” phenotype associ-
ated with mitochondrial DNA multiple deletion and carrying a
missense mutation (c.2729T.A)9 showed the smallest ONH size
in our case series (Table 2; Fig 2). An example of 2 DOA patients
with different size of the ONH is given in Figure 3.

Discussion

The main finding of the current study is that the OPA1
mutant DOA patients, as a group, have an overall signifi-
cantly smaller ONH as shown by the different parameters
measured by OCT, compared with an age-matched control
population. This observation suggests that OPA1 influences
ocular, and in particular, ONH development. The smaller
ONH conformation in the OPA1 mutant patients may, in
turn, contribute to the pathogenic mechanism of DOA pos-
sibly explaining the early onset of the disease, which some-
times seems congenital.

OPA1 has a well-documented role in controlling apopto-
sis,13,16,17 which has been recently emphasized by modeling
OPA1 mutations in the hortholog gene of Drosophila
(dOPA1).26 The somatic expression of the homozygous
dOPA1 mutation in the Drosophila developing eyes caused
rough (mispatterning) and glossy (decreased lens and pig-
ment deposition) phenotype, possibly owing to altered con-
trol of apoptosis and increased production of reactive oxy-
gen species.26 Similarly, excessive reactive oxygen species
production was also documented in C elegance carrying
mutant EAT-3 gene, the ortholog of human OPA1 gene.27

Thus, taking into account these recent results, OPA1 muta-
tions in humans may alter the ONH size by altering the
pattern of developmental apoptosis during embryonic
stages. In fact, the importance of OPA1 in embryonic de-
velopment is highlighted by the embryonic lethality ob-
served in homozygous mutant animal models.28,29

Table 2. Genetic, Clinical, and Topographic Optic Nerve Head Measurements in Dominant Optic Atrophy Patients

Pedigree
No.

Pedigree

No.
Affected
Patients OPA1 Mutations

OPA1

Exon

Age BCVA Disc Area (mm2)
Vertical Disc

Diameter (mm)
Horizontal Disc
Diameter (mm)

Mean (SD) Mean (SD) Mean (SD) P Mean (SD) P Mean (SD) P

1,2 2 7 c.98413A.T, splice
defect

9 50 (24.9) 0.13 (0.07) 1.65 (0.20) 0.0014* 1.49 (0.17) 0.023* 1.38 (0.10) 0.0063*

3 1 3 c.1346_1347insC;
Thr449fsX

14 25.7 (13.6) 0.33 (0.2) 1.94 (0.24) 0.68 1.81 (0.12) 0.08 1.47 (0.08) 0.36

4 1 2 c.151611G.C (splice
defect)

15 23 (21.2) 0.55 (0.6) 1.79 (0.13) 0.25 1.55 (0.07) 0.21 1.40 (0.06) 0.10

5 1 2 c.2729T.A
(Val910Asp)

27 39.5 (26.2) 0.20 (0.0) 1.31 (0.33) 0.002* 1.46 (0.21) 0.15 1.23 (0.18) 0.03*

6,7,8 3 6 c.2708-2711delTTAG;
Val903fs

27 37.6 (18.0) 0.30 (0.4) 1.72 (0.34) 0.030* 1.57 (0.13) 0.14 1.34 (0.17) 0.014*

9 1 3 c.2815delC (L939fs) 27 22.3 (18.6) 0.58 (0.4) 1.91 (0.31) 0.41 1.77 (0.16) 0.32 1.35 (0.01) 0.003*
10 1 2 c.2797G.A

(Val933Ile)
27 29 (14.1) 0.34 (0.4) 1.70 (0.07) 0.059 1.46 (0.06) 0.035* 1.44 (0.08) 0.29

11 1 3 c.2819-2A.C splice
defect

28 42.7 (18.7) 0.18 (0.2) 1.81 (0.15) 0.13 1.55 (0.25) 0.56 1.48 (0.08) 0.51

BCVA 5 best-corrected visual acuity; SD 5 standard deviation.
*Statistically significant.

Table 3. Topographic Optic Nerve Head Measurements
Comparison between Control Group and Dominant Optic

Atrophy Patients

Controls
(n 5 56 eyes),

Mean (SD)

Dominant Optic
Atrophy Patients
(n 5 28 eyes),

Mean (DS) P

Disc area (mm2) 2.05 (0.33) 1.73 (0.26) ,0.0001*
Vertical disc diameter

(mm)
1.67 (0.15) 1.58 (0.18) 0.018*

Horizontal disc diameter
(mm)

1.55 (0.15) 1.38 (0.12) ,0.0001*

SD 5 standard deviation.
*Statistically significant.
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Stratifying the results of this study by OPA1 mutation,
we noticed a range of different degrees of ONH size.
Subjects with the c.1346_1347insC or c.2815delC muta-
tions were not distinguishable from normal subjects. How-
ever, those with the c.2729T.A mutation were on the
lowest end of the range. Interestingly, the latter is a mis-
sense mutation associated with a “DOA plus” phenotype
carrying mitochondrial DNA multiple deletions in the skel-
etal muscle as previously reported (family 2 in Zanna et al8).
All the other mutations, including the common microdele-
tion c.2708-2711delTTAG, were associated with a variable
reduction of ONH size. Overall, this subanalysis suggests a
mutation dependent effect on ONH conformation.

A small ONH with a small cup-to-disc ratio character-
ized as “disc-at-risk” has been historically associated as a
major predisposing factor for NAION.19 Recently, we re-
ported that large ONH size may protect from developing
LHON and improve the final visual outcome in affected
subjects.23 In both NAION and LHON, the pathology is a
subacute/acute event; a small ONH, reflecting axonal
crowding, may impose mechanical constraints. However,
the current findings in DOA patients may suggest a different
scenario. Optic neuropathy in DOA is a relentless, slowly
progressive process that most likely invokes small-scale
axonal degeneration, which does not implicate mechanical
constraints. Thus, in contradistinction to NAION and

Figure 1. Disc area, vertical disc diameter and horizontal disc diameter in dominant optic atrophy (DOA) and controls. (Each box shows the median,

quartiles, and extreme values; circles represent the outliers).

Figure 2. Disc area, vertical disc diameter, and horizontal disc diameter in the 8 different OPA1 mutations, showed in Table 2, and controls. (Each box

shows the median, quartiles, and extreme values; circles represent the outliers).
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LHON, a critical issue is whether the small ONH in DOA is
associated with an excessive crowding of axons or with a
constitutive smaller number of axons. This last hypothesis is
supported by the known role of OPA1 in controlling apo-
ptosis and its importance in embryonic development as
highlighted by the embryonic lethality of homozygous
OPA1 mutant mice.28,29 A recent study by OCT on a small
number of DOA patients proposed a relative reduction of
axonal numbers in the first decade of life, which may fit
with a constitutive smaller number of axons at birth.30

The role of OPA1 in apoptosis is thought to be indepen-
dent of the control of mitochondrial fusion and relates to the
involvement of OPA1 in the maintenance of cristae mor-
phology, in particular keeping cristae junctions in a close
conformation that sequestrate cytochrome c (cyt c).13,16,17

OPA1 haploinsufficency or dysfunction as with missense
mutations may alter this cyt c compartmentalization, in-
creasing the cells’ predisposition to undergo apoptosis.
Genes implicated in regulating apoptosis during embryo-
genesis, as now proposed for OPA1, are critical in eye

Figure 3. Representative optic nerve head color pictures and optical coherence tomography analysis of a dominant optic atrophy (DOA) patient with

a small optic disc (A, C, E), and a DOA patient with normal optic disc size (B, D, F). DA 5 optic disc area; OD 5 right eye; OS 5 left eye; VDD 5

vertical disc diameter.
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development. Multiple examples of how altered function of
such genes interferes with eye development come from
mouse models. For example the Bax2/2 mouse present a
.50% increase in retinal ganglion cell numbers, whereas
the opposite occurs with the Bcl22/2 mouse model, which
is associated with the loss of one third of retinal ganglion
cells.31 Further genes with a pivotal role in eye development
are homeobox genes such as Vax1 and Vax2, or the highly
conserved transcription factors Pax6 and Pax2.32,33 Genetic
variation in all these genes, including OPA1, may give rise
to the observed variability in ONH anatomic conformation
in the general population. Furthermore, genetic variation in
the OPA1 gene may become relevant as modifier in those
ocular diseases for which ONH size has been implicated
such as the already mentioned NAION and LHON.19,23

Moreover, an association of OPA1 polymorphisms with the
risk to develop normal tension glaucoma has been proposed,
even if these initial studies have not been replicated in other
series.34–37

Optic nerve hypoplasia could be also modulated by ge-
netic variability in the OPA1 gene. Optic nerve hypoplasia
is a poorly understood condition, sometimes difficult to
unequivocally diagnose; in about 20% of cases, it is an
isolated feature, without correlated central nervous system
developmental abnormalities.38 Our study on DOA patients
poses the question of a possible problem with differential
diagnosis of some DOA cases with optic nerve hypoplasia.
We herein propose that variants in the OPA1 gene may
underlay some cases of optic nerve hypoplasia and OPA1
sequence analysis is warranted to solve this hypothesis.

In conclusion, our study proposes a previously unrecog-
nized role for OPA1 in eye development, and in particular in
modeling the ONH size and conformation. A proper investi-
gation of axonal numbers in ONH of DOA patients is war-
ranted to clarify the issue of axonal crowding. Our study has
broad implications both for DOA pathogenesis and for a mod-
ifying role of OPA1 in other eye pathologies. A strict geno-
type/phenotype correlation of our findings at the single muta-
tion level requires an investigation in a larger series of DOA
patients. Ultimately, ONH size may have implications for the
phenotypic expression of optic neuropathy in DOA in terms of
age of onset, disease progression, severity, and penetrance.
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